Blur Parameter Identification using Support Vector Machine
نویسندگان
چکیده
This paper presents a scheme to identify the blur parameters using support vector machine (SVM) Multiclass approach has been used to classify the length of motion blur and sigma parameter of atmospheric blur. Different models of SVM have been constructed to classify the parameters. Experimental results show the robustness of the proposed approach to classify blur parameters.
منابع مشابه
Identification areas with inundation potential for urban runoff harvesting using the support vector machine model
Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...
متن کاملBlur and Illumination Invariant Robust Face Recognition Using Support Vector Machine (svm)
Face recognition is the biometric identification by scanning a person's face and matching it against a library of known faces. The Issues in Face recognition include image degradation due to blur and variations in appearance due to illumination. Blur refers to the less sharpness or unclearness in images whereas Illumination refers to the placement of light sources in images. Our approach deals ...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کامل